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J. Phys. A: Math. Gen. 24 (1991) 5137.5154, Printed in the UK 

Electronic stability of disordered systems: application 
to quasicrystals 

C l h e n t  Siret 
Centre de Physique Thiorique, CNRS-Luminy, case907, 13288 Marseille Cedex 09, France, 
and Labarataire de Physique des Solides de Bellevue-CNRS, 1 01 A Briand, 92195 Meudon 
Cedex, France 

Abstract. This paper is devoted to the study of energetic stability of disordered binary 
alloys in which atoms are interacting via a tight-binding Hamiltonian. In  ID,  far a weak 
potential, the gain in energy compared to the periodic linear chain is derived as a function 
of the electronic filling factor and the disorder. Very precise results are given in the case 
of a quasiperiodic arrangement. This kind of phase plays a very particular role since it is 
shown that for a given filling factor Y (or Fermi level position), the most stable structure 
is a quasiperiodic one associated to Y Moreover, for this structure the fluctuations o f t h e  
density are unbounded if Y and the stoichiometric coefficients do not fulfil an arithmetical 
condition. Different features are observed for rational and irrational Y B I U C S  o f  U. These 
results which are exact for any concentration and Blling factor are illustrated on the 
quasiperiodic Fibonacci chain. The ZD case is also studied by means of a solvable 
quasiperiodic Hamiltonian on a subtiling of the octigonal tiling. Numerically. one finds 
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The opposite Situation is obtained by increasing the potential. 
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1. Introduction 

The study of the stability of I D  chains is an old problem in solid state physics. For 
instance, one can compare the cohesive energy of the I D  periodic chain to that of the 
dimerized chain. For a half-filled band it is well known that the latter is more stable. 
Indeed, a gap appears in the middle of the spectrum which shifts to lower energy the 
levels near the Fermi level. This is related to the so-called Peierls instability (Peierls 
1955). More recently, Kennedy and Lieb (1987) have shown that under simple assump- 
tions, the most stable structure at half-filled band is exactly the dimerized chain. 

After the discovery of quasicrystals (Schechtmann et a/ 1984), the relevance of a 
quite similar phenomenon called the Hume-Rothery stability condition (Hume-Rothery 
1926) has been discussed by Friedel and Denoyer (1987) in order to explain the stability 
of quasicrystals. The measurements of a low density of states at the Fermi level in 
AlLiCu (Wang PI al 1988) is consistent with this kind of explanation. This also can 
be an explanation of the high resisitivity of these phases compared to their amorphous 
or crystalline equivalent. In order to study this problem in a quantitative way, Makler 
and Gaspard (1990) have computed the cohesive energy of the quasiperiodic Fibonacci 

t Mailing address: Laboratoire de Physique Quantique, Universite Paul Sabatier, I18 Route de Narbonne, 
31062 Toulouse Cedex, France. 
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chain with respect to the electronic filling factor. As a generalization of the dimerized 
chain result, they find that the Fibonacci chain is more stable than the periodic chain 
for a filling factor near (3-&)/2. 

In what follows, a systematic approach of the stability of I D  systems is introduced. 
The main goal is to extend the theoretical result of Kennedy and Lieb and the numerical 
work by Makler and Gaspard for any filling factor and atom concentration. 

I shall first define a tight-binding Hamiltonian. Then, a general perturbative formula 
for the energy gain is written when the Fermi level lies in  a gap. More complete results 
are given for I D  quasicrystals, since it will be shown that among all the I D  chains, the 
quasiperiodic ones play a particular role regarding stability. 

In the last part of the paper we study numerically the case of a 2~ quasiperiodic 
tiling which is compared to the square lattice. 

2. Hamiltonian for in chains 

In the part of the paper devoted to the I D  case, one considers an infinite chain S, built 
in the following way. We consider a word of length n made with p letters A and q 
letters B ( p  G 4). S,, is obtained by gluing an infinite number of identical words of this 
kind. Sometimes, we shall consider the limit p + +m, q + +cc and p i n  + 8. The associ- 
ated chain will be called S ,  (random, quasiperiodic,. . .). We consider then the linear 
chain built by associating a bond of length I to a letter A and I' to a B.  

Given the sequence of A and B, one can define a first neighbour tight-binding 
Hamiltonian 

Xe, = - 1 ti(li)(i + 11 + / i  + I ) ( i l )  4 E {P.  P ' l .  (1)  
i c z  

The sequence of hopping parameters - p  and -p '  is taken to follow exactly the one 
of A and B (or I and 1 ' ) .  We have chosen negative parameters for the effective potential 
induced by the electrons to be attractive. In addition, we add to the electronic 
Hamiltonian a phenomenological repulsive atomic Hamiltonian, in order to prevent 
LllC S y b l a l l  L101,1 Lulrapbmg. 1 "IS Classical nalllllL"llla1l I> a SUI11 0 1  Lw"-"0"y bU"l L-rangc 
potentials 

.L *. ..c-.- ^_'I._.:_. *L:. .l.~~l..l,.._:l.^l:._: ^ P  ..... L._I..L._ ..__. 

where r, is the length of the bond between atoms i and i + l .  
The hopping parameter is a decreasing function of the distance between atoms 

since it measures the overlapping between the real atomic potential and the Wannier 
functions localized at two nearest neighbour sites. This can be written 

wheref is a strictly decreasing function of the interatomic distance which is inversible. 
Thus, V i r , )  Is an increasing function of f j  since one can write 
~. 

g is an increasing function which verifies g(0)=0 since when I + + m  the potential 
must go to 0 as well as the hopping parameter p. These manipulations allow us to 
eliminate the spatial variables. 
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Even if the following results in I D  will not depend on the precise form of g in the 
limit of weak potential, we shall consider 

which leads to quite simple calculations. We can justify such a choice. Indeed, in 
numerical simulations one often takes parameters as exponentially decreasing functions 
of the distance beiween atoms: 

p ( r ) =  v e x p ( - r l r J  v i r )  = Cexp(-pr/r,) P ' l  

so ( 6 )  

The condition p > 1 implies that the repulsive potential vanishes at a lower scale than 
the attractive interaction. If not, the ground state would be the set of isolated atoms. 
Moreover, the numerical values are often close io 2. For instance, the study of silicon 
aggregates by Mosseri and Gaspard ( 1 9 8 1 )  uses p = 1.893. In the following, we strictly 
take p = 2. By changing Xe by Xe/ E and ti by ti/ E, we can restrain ourselves to the case 
E = i. Toe conceniraiion of bonds p being 6 = p i n .  we shaii iinaiiy study the Fiamii- 
tonian 

X ( p ,  p' ,  8 )  = - 

ti {P, P ' l .  (7) 

rj(l i)(i+ 1 1 + l i + l ) ( i l ) + t ( 8 p 2 +  ( 1  - B ) p ' * )  
i E Z  

3. The cohesive energy of I D  chains 

For given p, p '  and 8, we define n ( p ,  p ' ,  0, E )  as the electronic density of states (iios) 
and N ( p ,  p',  8, E )  as the integrated density of states (IDOS). Then, the cohesive energy 
A f  rhn ,-~..-iAa-eA ch-ir n n A  tLr G l l i n n  f-,+m* 0-0 A n f i n d  h., 
"1 U,.. ~ " , , D , " ~ L C "  b,,',.,, LL.. U L U C  L , , " " ~  ,',CL". 'L.r U..IIIICY " J  

E,: 

(8) 
E ( p , p ' ,  6, E F ) = 1 - _ x 4 p , p ' ,  ~ , X ) d x + f ( O p 2 + ( ~ - 8 ) p " )  

U = N ( P ,  P ' ,  8, EF) 

where E ,  is the Fermi level and U is the electronic filling factor, which is the integrated 
density of states at the Fermi level. Now, we introduce some useful notations: 

p = p B + p ' ( l  - 8 )  

p = P ( I - ( l -  0)s) 

n(p,  p' ,  8, E ) =  n ( p l P ,  p ' lp ,  0, E l b ) =  n(S, e. E l i ) .  

p ' = P ( l f  BS) 

p is the average hopping parameter and 8 measures the strength of the disordered 
potential since S = O  corresponds to a periodic Hamiltonian. The last line of ( 9 )  is a 
consequence of the linearity of the electronic Hamiltonian with respect to the hopping 
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parameters p and p’.  It allows us to compute the cohesive energy by means of the DOS 

for p = 1. Preferring the filling factor to the Fermi level, the cohesive energy can be 
written in the new variables 

E ( ” )  

x n ( S ,  e,x) dx+fp2(1+a(e)SZ) .  (10) I_, E ( P ,  S. 0, U )  = P  

In (10). we have inversed locally the expression U = N(S,B,  E, /p )  and we have defined 
E (  U )  = EF/P. This operation must be done carefully. Indeed, in general the filling 
factor is not a strictly increasing function of the Fermi level since it is constant in a 
gap. So, we have to define E ( u )  for values of U for which a gap exists. For these filling 
factors, E (  U )  will be taken to be the lowest edge of the gap. One can check easily that 
any other choice in the gap gives the same value for the cohesive energy since the DOS 

is zero in a gap. 
Now, we have to minimize the energy given by (10) with respect to both parameters 

p and S which can be treated as independent ones. We first optimize the energy with 
respect to p. The energy being a quadratic and linear function of p ,  this procedure is 
particularly simple and leads to 

E ( ” )  
. x n ( 6 ,  0, x) dx 
Pop = - 1 + a (  e ) s2  

We use this value to finally find a cohesive energy E ( v ,  8, 6) which depends on the 
filling factor, the disordered sequence of A and B and the strength of the potential: 

The effect of the repulsive potential (on the denominator) is quadratic in 6. This is a 
very general feature which is verified for any smooth enough function g, at least to 
the leading order in S. We are left with the energy function (12) to minimize with 
respect to S. This is a very complicated task since the density of states in (12) depends 
on S and is not known for a general disordered chain and for any S. Thus, we shall 
compare the cohesive energy of the periodic linear chain (8 = 0) to the one obtained 
for a weak potential (18 <C 1) on a disordered chain. We shall study this chain by means 
of perturbation theory. 

First of all, we give the cohesive energy of the periodic chain. This structure is 
obtained by setting 0 = 0 (only one kind of hopping parameter) or 8 = 0 ( p  = p ’ ) ,  The 
spectrum (as well as the DOS and IDOS) can be exactly computed by means of the 
Bloch- Floquet theory: 

Then, the integral (12) can be easily calculated. One finds 

L ( v )  = E ( U ,  e =o,  S) = E ( ~ ,  e, s =o) = -2 (si:u)z. ~ (14) 

In the following, we study the difference between (14) and the cohesive energy of a 
disordered chain. 
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4. Stability of I D  disordered chains 

We recall that we consider an infinite periodic chain with an elementary cell of n 
atoms. In this cell, there are p bonds of type p and q of type p' ( p +  q = n ) .  We can 
apply the Bloch theorem to such an Hamiltonian by introducing a Bloch vector k. 
Then, the electronic Hamiltonian can be written 

Generically, the spectrum of &I consists in n bands. Their edges are given by the 2 n  
states associated to k = 0 and k = T and the IOOS in a gap is a multiple of I j n .  For a 
weak potential the centre Ej and the half-width 8, of a gap are given by perturbation 
theory. If the IDOS in the considered gap is j / n  the first-order perturbation theory 
gives (we recall that p = 1) 

E j = - 2 c o s ( j ~ / n ) + 0 ( 8 * )  

where E, = -1  if t1 = p and = + I  if tl = p' .  Indeed, 8, is given by l( j+ 1x1 j -)I where 
I j * )  are the two degenerated states of the periodic Hamiltonian ( 1 ,  = 1) corresponding 
to the filling factor j / n .  We shall use these expression further when we will look for 
the most stable structure. We forget about the exact value of 8, and define the edges 
of the gaps and o f  the spectrum 

E: = E, f 8, E'= + 2 + 0 ( ~ ? ~ ) .  (17) 
Each gap in the spectrum induces a local modification of the DOS of the periodic 

linear chain 6. Thus, we shall write 
n - l  

n ( 8 ,  0, E ) = $ ( € ? ) +  1 n,(E)  
, = I  

r E" 

J n,(x)dx=O 
E -  

since generically, we expect the presence of n - l gaps. The second line ensures that 
the integrated density of states remains normalized to 1. Moreover, the IOOS in the j t h  

I 1 I 
E,: E, E: 

Figure 1. Schematic behaviour ofthe IDOS near a gap where Van Hove singularilks prevail. 
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gap is exactly j l n ,  so that we have the following normalization conditions which can 
be easily interpreted on figure I .  
N(S,O,  €;) -*(E;)  

= k ( E : ) - N ( S , O , E ; )  
E* =joE' n,(x) d x + O ( S 2 ) =  n , ( x )  dx+O(S2)  

8: 

= 1 [ Y )  31 -to(&') 

=i[ 7T cos-(;) 4( 591 +O(  8') 

7T 

- - 

In th x o n d  line of (19), we have neglected up to 
of all functions n, for k # j .  This is .justified below. 

)rdt O(8') the contribu ion 

Around the gap centred at E, the density of states is dominated by  the strong I D  

Van Hove singularities (figure 1): 

.... wnen iE -E,\ >>a,, n, goes IO zero, which ieads to the foiiowing expression For the DOS: 

=-<(E) forEE[E;,E:]. (21) 

This expression is obtained by imposing that n j ( E )  is at least an order O(6') when E 
goes to infinity. U, can be computed from the condition (17). One easily finds 

We have replaced < ( E )  in the gap by its value at the centre E, u p  to order O(Sj). By 
integrating on the gap of width 26,, the contribution of this term will be a O(8;) .  So, 
one can see that in (l7), the contributions of other gaps than gap j to the first integral 
is of order O(X 6:) = 0 ( S 2 ) .  

Now, we assume that the Fermi level lies in the gap indexed by j. We then compute 
the cohesive energy of the chain. First of all, we have 

1: I 

nj(x)dx+ (x-E,)n,(x)ds I E : 
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where we have performed the change of variable U = ( E  - E j ) / S j .  This last integral can 
he exactly computed. Since we only need the leading terms, we finally obtain: 

On this expression (241, we easily check that condition (18) is fulfilled. Now, we 
subtract to (12) the cohesive energy of the periodic chain. Thus, the difference of both 
energies is given by 

= 2  , 
The first integral of the second line has already been computed in (24), whereas the 
second one can be exactly performed. It cancels exactly the linear term of (24) so that 
the final result reads: 

AE(u, ,  O , F ) = - t l n  2 l  (i,) - +0(8'). 

If 8, behaves linearly in 8, (26) shows that for sufficiently small 8, the disordered chain 
will be more stable than the periodic one, at least for U = U,, or close enough to U,. 
This result does not depend on the repulsive potential, provided that it is sufficiently 
smooth (say '8'). 

Now, let us study the infinite limit, that is, when n + fa. The density of states of 
the infinite structure S ,  has a countable set of gaps that can be finite or even zero. 
We call N= [ U,} the set of the values of the IDOS in  these gaps. Hence, each gap is 
labelled by the value taken by the IDOS inside it (for recent results concerning this gap 
labelling see Bellissard (1991)). If the gap does not scale linearly with 8, (26) shows 
that the effect of the opening gap is (less than) an order 0 ( S 2 ) .  The effect of the 
repulsive interatomic potential can make this term positive, provided it is strong enough 
(p large enough). Thus, even if the Fermi level stands in this gap, the periodic chain 
is still more stable. Conversely, if the gap at U! still opens linearly, then the first-order 
perturbation term induces the stabilization of the disordered structure: 

Here, we have kept the g, in the logarithmic term (although it contributes to an order 
S2) in  order to have a function of the single variable 8g,. Moreover, one can see that 
g, is not zero if and only i f  the Fourier transform of the sequence { E , }  contains a Dirac 
peak for a wavevector equal to 27ru,. This is a typical feature of a relatively well ordered 
structure. As an example and a possible test of ( 2 7 ) ,  we apply the preceding formalism 
to the quasicrystalline case. 
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5. Stability of ID quasicrystals 

As mentioned in the introduction, quasicrystals are good candidates in order to illustrate 
the stabilization of a structure by the opening of a gap at the Fermi level. Quasicrystals 
are quite well ordered structure in the sense that they can be arbitrarily well approxi- 
mated by periodic crystals. 

In ID, this can be seen by the following construction called the cut and projection 

semi-opened strip 9 built by translating the unit square of a 2~ square lattice along 
a line of slope T. As can be proved and as can be seen in figure 2, there exists only 
one path included in 9, along the bonds of the square lattice, provided T is irrational. 
The sequence of vertical and horizontal bonds is quasiperiodic for an irrational slope, 
whereas it is periodic of unit cell n = p + q  when r = p / q .  We now consider the 

to an horizontal one. Then, we proceed exactly like in section 2. 

method (Duneai; a-d Yatz 1985, Ka!-gi:: 2! a! 1985, Eke: 1385). C=xide: the 

tight-bir?dizg unrr?i!tonilll bui!t by zssoci2ti"g !mer .4 to 1 .%tic.! hnnd and !etter n 

Figure 2. The cut and projection method 

This kind of Hamiltonian has been introduced in a different context by Kohmoto 
et a1 (1983) and Ostlund et a1 (1983). They find a renormalization group procedure 
allowing numerical computation of the spectrum for T =(A- 1)/2 (the Fibonacci 
chain) in a very efficient way. In the following, we shall compare the theoretical results 
for quasicrystals to numerical studies performed on the Fibonacci chain. 

First of all, we recall the result for the gaps opening in I D  quasicrystals of irrational 
slope 7 (Sire and Mosseri 1989): 

T N={u?=*jtje[l] ,  j e  N )  0 = -  
1 + T  

2 

=J 
gj=-lsin(?rjO)( 

where 0 is as previously the concentration of p and [ ] denotes the modulo operator. 
This shows that all the gaps of quasicrystals open linearly with S. This can be related 
to the fact that the Fourier spectrum of a quasiperiodic sequence {e,} consists in a 
dense set of Dirac peaks. Indeed, recently Luck has related singularities in the Fourier 
spectrum to the opening of gaps (Luck 1989). 
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Finally, the difference between the cohesive energy of the quasicrystal and the 
periodic chain reads 

where we recall that is given by (14). We find that for any j ,  the quasicrystal with 
filling factor U: = i j S  [ I ]  is more stable than the linear chain, at  least for sufficiently 
small modulation S. We can estimate the critical value of S under which this situation 
occurs. If we assume that the O(Sz) roughly does not depend on j or at least does not 
go’to zero when j tends to infinity, this critical value S , ( j )  is reached when both terms 
in (29) are of the same magnitude. This implies 

& ( j )  - j  exp(-Cj2) (30) 
which goes to zero very rapidly. Thus, for large j (that is for small gap) the gain in 
energy below S , ( j )  will be very small (of order 6;). In the case of quasicrystals, the 
O(S2)  is found to be a smooth slowly varying function of U so that this argument is 
valid in this case. 

In order to verify these results, we show in figure 3, AE/S2E as a function of U. 

The curve has a set of minima (cusps) which are found to hold for U belonging to jV. 
As S is decreasing, we find that these minima are also slowly decreasing, whereas new 
domains of stability appear. 

We have also checked the validity of (29) for j = 1 and j = 2 .  For different values 
of 8, we have plotted A E / S ” E ( v , )  as a function of In S. We find perfect lines, as 

Y 

Figure3. - A E l a ’ k  asafunctianof u € [ O ,  Illor: ( a ) S ’ = O . l ; ( b )  8’=o.o l ; (~)s ’=o .0o~;  
( d )  S’=O.OOS. The dolled line corresponds to energy 0. 
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predicted by (29). Moreover, the slopes are very near their theoretical value. For 
ins tancefor j= l ,  we find 1.81712insteadof (aB(l-B))-2=1.81813.... Finallythe 
ratio between both slopes is found to be 4.015 instead of the exact value (2/1)2=4. 
All these results are shown in figure 4. 

L 
10 I O '  103 10' 

116 

Figure 4. Far j =  I (full squares) and j = 2  (open squares) we have plotted 
A€(";, s ) / ( s , ~ E ( u ; ) )  as a function of in ( i / s ) .  

As can be seen in figure 3, the minimum of AE at U; is a cusp. This is an important 

to the original structure, we expect the effect to be the addition of a small smooth term 
to the previously computed PE.  Thus, even if AE(v: )  changes, it remains a strict 
minimum provided the additional noise is weak enough. 

So, in the following we shall study the minimum of AE in the vicinity of vj, in the 
general case. In the same spirit as for (25), we obtain for Y 3 ui : 

fsa;uw from a p>y<ia: poist of +*, ladeed, if .we add a sma:: Biiioiist of $,soi(Jei 

xn*(x) dx +O(S*j. (31) 

NQW, we arrgme I E ( v )  - E ( v l ) \ c  8j: One can easily see that x can he replaced by E,? 
in the first integral, whereas the second one is easily computed: 

A E (  v, 0,s) = A E  ( U;. 0,s) + 2 

1 xn(S,t?, x)  dx - 

/sin( y)) 
7r 

E ( , , ,  ( n(8, B,x)dx+-(sin(?rv,j-sin(rru))] 2 .  
L J E :  71 J 

+ 0 ( S 2 , ( u - - Y , ) 2 )  

'sin(.rrv1)' ( v  - U , ) + O ( S 2 ,  ( v  - v,) 2 ). = A E ( u , ,  0, 8j+28,  
71 
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The derivation for Y S  uj is strictly similar to (31), (32) and gives a contribution of the 
opposite sign so that in (32) one can replace ( Y - U , )  by Iu-uj I .  In the case of a 
quasiperiodic chain (29) and (32) give the following expression for AE near U;: 

This calculation confirms the presence of symmetric cusps. Numerically, and for small 
6, the accuracy of (33) is perfect for the Fibonacci chain (figure 5 ) .  The second-order 
terms in ( U - Y ? )  can also be computed from (31). Only the leading term in 6 is 
symmetric. 

In the following section, we are looking for the most stable structure for a given 
sufficiently small 6. 

‘U, 
?. - 
D 

- - 
,? - 
b. 
Q 

~- 
Y 

Figure 5. The theoretical cusps (33) are shown below their numerical counterpan 

6. Quasicrystals: an equilibrium state 

The title of this section is a partial answer to our problem. In the following, we shall 
prove that for a given filling factor U the more stable structure is a quasicrystal. 

From the beginning of this paper, we were dealing with chains made of a sequence 
of bonds A and B. These chains can also be seen as sequences of atoms a and p. We 
define an atom of kind a to be surrounded by one bond A and one bond B (no matter 
of the order), whereas an atom of type p is surrounded by two A s  or two B’s. The 
a-atoms can be seen as ‘anisotropic’ while p-atoms are ‘isotropic’ regarding their 
orbitals. The concentration of a-atoms is not a priori related to 9 which is the 
concentration of bonds of kind A. 

The first problem we are interested in is the following. We fix 0 and Y and look 
for the most stable structure at least at sufficiently small potential S. From (27), at 
small enough 6, AE is an  increasing function of the width of the gap at the Fermi 
level, that is an increasing function of g,. So, we are left to find the structure which 
leads to the maximum value of this quantity. 
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6.1. Irrationalfi[[ing factors 

We first consider the case 8 = p i n s $  and periodic structures of size n as introduced 
in section 2, that we shall make go to infinity. Then, as seen in section 4, the filling 
factor in a gap is of the form u j = j / n  and gj is given by (16). In the following, we 
assume u, since one can easily see that the properties for U and 1 - Y are strictly 
identical. Moreover, we are first interested in the case of irrational Y so that 

lim uj = U $  Q 
n r + m  (34) 

One can always take j and n mutually prime since the limit is irrational. Then, gj can 
also be written 

The transformation from the E ,  to the q1 bears resemblance to the conumerotation 
approach (relabelling of sites) used in Sire and Mosseri (1989). In ( 3 9 ,  we recall that 
p of the qr are equal to -1, and q to + l .  Moreover, it is shown in the appendix that 
up to a global shift the sequence {ql} which leads to the maximum value of gj is the 
following: 

The corresponding sequence of A and B defined from the sequence { E ~ }  is quasiperiodic 
since it can be built by means of a circle mapping. Indeed, from (36) and the definition 
of the ql (34), it is easy to show that 

&# = 1 - 2 X 8 (  lu)  (37) 

where ,ye is the characteristic function of the window [0, 81 on the circle (of perimeter 
I ) ,  whence the name of the sequence. Equation (37) holds for any 8 and for irrational 
U. One can add in (37) a global phase to lu. This leads to the same structure up to a 
(eventually infinite) translation. The circle algorithm is illustrated in figure 6 ( a ) .  

The circle sequence as an abstract sequence of -1 and 1 can be shown to be always 
quasiperiodic although the binary structure built by associating a length I to -1 and 

in1  l b l  I C 1  

Figure 6. (a) The circle algorithm. ( b )  I f  0 =$there are two symmetric windows associated 
to AB and BA ( c )  This is equivalent to a circle mapping with both window and velocity 
twice larger (equal to 2”) .  
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I' to 1 has been conjectured to have a singular continuous Fourier spectrum if the 
following arithmetical 'Kesten condition' is not fulfilled: 

3 r E Z /  0 = r v [ l ] .  (38) 
General references devoted to the circle sequence and a study of a wide class of 
disordered sequences can be found in Godrhhe  and Luck (1990). 

We note that this condition (38) is likely to be the physically observed situation. 
If each atom contributes for a rational number of electrons, the filling factor and the 
concentration could be related by such a relation. Now, when seen as a sequence of 
atoms a and 0, the abstract chain of atoms is still quasiperiodic. If we associate -1  
to an a-atom and since it corresponds to the occurrence of AB or BA in the bond 
sequence, one can see that the sequence is obtained from a circle mapping with two 
disconnected windows or only one whether v < 0 or not. The associated optimal 
concentration of a-atoms is 2 v  if U <  0 and O + v  otherewise. 

Now, we are interested in the links between the cut and projection method of 
section 5 and the circle mapping. If the Kesten condition (38) is fulfilled by U and 0, 
then it can be shown that the bond sequence as well as the atomic sequence can be 
built from a cut and projection-like algorithm (Godrkhe and Oguey 1990). For instance, 
if U = 0 the most stable structure is exactly the quasicrystal of slope T =  O/(l - 0) which 
has been described in the beginning of section 5.  When 0 and v do not satisfy the 
Kesten condition, the atomic structure cannot be built from such a me:hod. For instance, 
if we associate a vertical (resp. horizontal) bond to each A (resp. B) of the sequence, 
the fluctuations around the line of slope 0/(  1 - 0) are not bounded but grow logarithmi- 
cally with the number of bonds. 

There is very particular case which corresponds to a physically important situation. 
Suppose we are now iooking for the most stable structure for a given U but letting 0 
free. It can be shown by direct computation of g, given by (36) that the optimum value 
is 0 = f .  Since f cannot satisfy the Kesten condition with irrational v, the sequence of 
bonds cannot be built from the cut and projection method with a bounded strip. This 
is in contrast with the derived abstract sequence of atoms a and p .  Indeed, for this 
particular value of 0, the sequence of atoms can be built from a circle with two windows 
of size U which are symmetric wiih respeci io  the centre of the circie (figure 6jbjj. By 
identifying points P and P' of figure 6(c), this sequence is exactly the same as the one 
obtained with only one window of length twice larger (2v) and the velocity being 2v. 
Then, (38) is satisfied with r =  1. One can show that the obtained sequence of a and 
p is exactly similar to the one built from a strip of slope 2v/( l -2v)  with a proportion 
2 u  of a-atoms. The fact that the most stable structure has equal proportions of A and 
B bonds is reminiscent of the dimerized chain case which has been shown to be the 
most stable structure for v = f .  In the following, we study the stability of disordered 
chains at rational filling factor. 

6.2. Rnfionnlfilling facfors 

We define v = j / n .  For such a filling factor, the gap width is proportional to 
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where 0"' is the probability that E ,  = -1 for indexes of the form l=jk[n].  In the same 
spirit as in the appendix, one can show that up to an irrelevant global shift, the largest 
value of g,,, under the condition of the last line of (39) is 

where p is the integer part of no. We note that for O = p l n  we recover (36 ) .  So, for 
irrational 0 and up  to the main order in 6 given by (27), there are an  uncountable 
number of evenly stable structures for rational filling factor, since the only requirement 
is that O'*n' (which is a probability) is n o - p <  1. 

If we are now looking for the most stable structure, only fixing v, it is obtained for 

unit cell twice larger if n is odd). This is a crystal, the proportion of a-atoms being 
min(2u, 2(1- U,)). For the special case U =$, there are only a-atoms and we recover 
the dimerized chain. .  . ABABAB.. . . This exactly the result of Kennedy and Lieb 
(1987). 

The conclusion for the I D  case is that for any filling factor and concentration of 
the alloy the most stable structure is quasiperiodic when seen as an abstract sequence 
of bonds or atoms. When the concentration of bonds is free of varying the most stable 
structure has 0 =f and an atomic concentration which is related to the filling factor. 
As a consequence, the periodic chain is never stable regarding electronic cohesive 
energy. This is illustrated in figure 7 where we have shown the domain of stability of 
this chain compared with (quasi-)crystals built from the cut and projection method, 
with rational slopes whose denominator is bounded by n going from 3 to +m. 

In the following section we study the stability of a ZD quasicrystal (the labyrinth) 
which is related to the octagonal quasiperiodic tiling. 

0 =$  ??.e asso&!ed rtrcctgre is now almost surely dcterminpd hy (An)  (consider a 

I b l  - 

I()- -. - 
. .. . . .  . . . .... . . ... .. . . . . .  . . . - 

l e 1  

Y 

Figure 1. Stability domain (for a given a )  of the periodic chain, compared to approximants 
of slope with denominator lower than (a) 3, ( b )  5 ,  (c) IO, ( d )  I5 and (e) +a!. 

7 ElnL:I:k.. ^F ,La ,"I... .i"*L. 
I .  """1.1,J ". l l l C  .P"J.."..' 

In this section, we shall try to extend the different results obtained in I D  to higher 
dimensions. This will be done numerically on a particular example in two dimensions, 
although one can easily apply such a procedure to similar examples in 3 ~ .  The labyrinth 
which is shown in figure 8 has been introduced as a suhtiling of the quasiperiodic 
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Figure S. The labyrinth and the three hopping parameters 

octagonal tiling (Sire et al 1989). It consists in an assembly of squares, kites and 
trapezoids. It is a quasiperiodic tiling itself and is topologically equivalent to a square 
lattice. So, one can see the labyrinth as a modulation of this 2~ crystal. This 
quasiperiodic modulation has something to d o  with the 'silver mean',& 1 as explained 
in the reference given above. 

We now introduce a tight-binding Hamiltonian on the labyrinth. There are three 
kinds of bonds on this tiling. We associate to each of them a hopping term respectively 
equal to - P ' ~ ,  -pp' and -p2 following the decreasing order of the length of these 
bonds. For p = p'. this Hamiltonian reduces to a periodic one. It bas been shown (Sire 
1989) that there exists an exact renormalization group for such a Hamiltonian which 
allows one to compute numerically the spectrum of very large periodic approximants 
of the labyrinth with a great accuracy. For instance, the spectrum of a sample of IO8 
atoms is calculated in less than one minute on a good PC. Now, we write the cohesive 
energy of the labyrinth. As in ID, we add a repulsive interatomic potential which is 
proportional to the square of the hopping term between each couple of nearest 
neighbours. Setting a = p / p ' ,  the total Hamiltonian reads 

%= - P ' ~  1 t,li)( jl + p'"( ( I  - p  - 9 )  + pa2+ 9a4) 
O.,) 

(41) 

where p and 9 are the proportions of medium and short bonds in the tiling. We define 
n(a ,  E )  to be the DOS of the Hamiltonian with hopping parameters 1, 01 and a2, 
Moreover, Y is the IDOS at the Fermi level and €(U)= E,lp". Then, the cohesive 
energy is given by a formula similar to the I D  case: 

tu E 11, a, "1 p = & - l  9 =; -A  

Ll"1 

€(a, U, p ' )  = P ' ~  

€1") 

x n ( a ,  X)  d x  + p'"(( 1 -p - 4 )  + p a 2 +  9a4) 

(42) 
L 

Y = / n(a,  x) dx. 
J -m 

We consider a and p' as independent variables and perform the minimization of this 
energy with respect to p' .  One easily finds 
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For a = 1, we recall that we obtain the cohesive energy of the periodic square lattice, 
By means of the exact renormalization group, we have computed E(a,  U) for different 
values of a. Compared to the I D  case many interesting features appear. We first recall 
the different regimes for the spectrum of the labyrinth when a goes from 1 to 0. When 
a is close enough to 1, the spectrum is made of only one band whereas a finite number 
of bands appears in a second regime by decreasing a. Then, by further decreasing a, 
the spectrum consists in an infinite number of gaps, and the Lebesgue measure of the 
spectrum vanishes. The values of the IDOS in the gaps can be shown to he integral 
combinations of 1 and I/&. These results will he related to the ones obtained for 
A E / g ( a ,  v) which is the relative difference between the cohesive energy of the labyrinth 
and that of the square lattice. 

Contrary to the I D  case, in the limit a + 1 (which is the analogue of S + 0). the 
square lattice is clearly more stable than the labyrinth for any filling factor Y (figure 
9 ( a ) ) .  This can be explained by the absence of gaps in the spectrum. By increasing 
the strength of the quasiperiodic potential, some pseudo-gaps appear in the spectrum 
and one can observe some local minima for P E  which remain positive (figure 9 ( b ) ) .  
By still decreasing a, the quasicrystal becomes more stable than the square lattice for 
a certain range of the filling factor (figure 9 ( c ) ) .  We note that in this regime and 
contrary to the I D  case, the local minima do not have the shape of a cusp and do not 
seem to hold for particular values of the filling factor. This is due to the fact that even 
for these values of a, the gaps are still closed. Nevertheless, there are regions in the 
spectrum where the density of states is very weak. Finally, by further decreasing a, 

** CI Q . . pm\ .. . . ~  . . . . . . . .  ..... . . . .  ... ~ . 

I C 1  Id1 

Y Y 

Figure9. - h E ! ~ f o r ( , o ~ a = 0 . y 9 ~ ( b ) u = O . Y , ( c ) o = 0 . 7 a n d ( d ) o = a . 3 . P a n s ( a ) a n d  
( b )  (resp. ( e )  and ( d ) )  are at the same scale. 
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we now see perfect cusps associated to the opening of gaps. For instance, the IDOS 

corresponding to the deepest minimum of figure 9 ( d )  is numerically found to be very 
close to 3 - 2 f i  which is the filling factor associated to the largest gap. 

These results lead us to make two major comments. First of all, contrary to the I D  

case, one can prevent the occurrence of the stabilization by replacing the interatomic 
repulsive potential by a strongest one. This is due to the absence of a singular behaviour 
of AE as a function of a. 

The second remark concerns the fact that one needs a sufficiently strong electronic 
potential for the quasicrystal to be stabilized. This is a new feature compared to the 
I D  case for which stabilization occurs surely for weak enough (infinitesimal) modula- 
tions. This clearly favours the occurrence of structures with a finite modulation in 
more than I D .  

’ 

8. Conclusion 

In this paper, we have studied the stabilization of unidimensional disordered binary 
alloys by their electronic energy. The main result is that generically the most stable 
structure for a given filling factor (and eventually for a given concentration) is a 
quasiperiodic one. The fundamental reason is that such structures lead to the largest 
gap at the Fermi level, the cohesive energy being an increasing function of the width 
of this gap. Moreover, we have found that the density fluctuations are unbounded 
when U and the bonds concentration cannot be related by the ‘Kesten condition’. It 
would be interesting to know whether these results can be extended to any potential 
strength. 

In two dimensions, the result is qualitatively different for the labyrinth since stability 
is obtained provided the repulsive energy is not strong enough and for a sufficiently 
strong modulation. Moreover, contrary to the I D  case, the shape of the minima is not 
systematically a cusp. 

As an application and as was claimed in the literature, this mechanism could 
explain the stability of quasicrystalline phases. Note finally that our results I D  are 
profoundly related to the stabilization of uniform flux phases on a square lattice (work 
in preparation). 
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Appendix 

In this appendix, it is shown that g, given in terms of 7, by (35) takes its maximum 
value when this sequence is given by (36) (up to a cyclic shift of the 7,). 

Suppose that the q, are in a configuration For which g, is maximal. By a correct 
cyclic shift of the sequence, one can assume 
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We assume that + is positive (one treats the other case in the same spirit). NOW, 
suppose that there exists an integer m, E I = I  - q / 2 ,  q /21  such that R,, = -1  (this must 
be understood modulo n ) .  Then, there exists another integer m2 E ]  - n/2, n / 2 ]  outside 
I such that qm2=+l ,  since there are q numbers of the sequence taking the value + I  
and I contains exactly q integers. Now, consider the new configuration obtained by 
exchanging the sign of v,, and 'I,,,,, Defining + ! = Z ? i m , / n  and r'=Z/exp(i+,)- 
exp(i+,)l, the modulus of the sum associated to this configuration is 

R 2 =  / rexp(i+)+Z e~p( i+ , ) -2exp( i+~)I  

= r2+  r'*+4r[cos(+, - +) -cos(+2- +)I  
=r2+r '2+4rF(4 ,+ , ,+1) .  (45) 

We have /+11S1+21 and the equality occurs if and only if 9 is even, m , = q / Z  and 
m2= -q/2, so that O<+,=-+,. Since +ZO, one can easily check that F is then 
positive. 

Now, if the equality is not true we. have l + 2 \ - l + , l ~ 2 ? i / n .  If + < ? i / n ,  then 
14,- +I > - +I and F is strictly positive. Otherwise, F can be zero but cannot vanish 
simultaneously with r'. 

Finally, in each case we found that R > r, which is in contradiction with the initial 
assertion that the sequence {qr} leads to the maximal value of g, (or r). This ensures 
that the values of I for which or = 1 are the q integers included in I. This solution is 
exactly the one given by (36) up to a global shift. 

References 

Bellissard J 1991 Number Theory in Phyricr (Ler Houches) ed J M Luck er 01 to appear 
Duneau M and Kat2 A 1985 Phys. Rev. Lerr. 54 2688 
Elser V 1985 Acta Crysr. A 42 36 
Friedel J and Denoyer F 1987 C. R. Aeod. Sci. Paris drie I1 305 171 
Godrkche C and Luck J M 1990 1. Phys. A: Math. Gen. 23 3769 
Codrkche C and Oguey C 1990 J. Physique 51 21 
Hume-Rothery 1926 J.  Inst. Mer. 35 295 
Kalugin P A ,  Kitaev A Y and Levitav L S 1985 J. Physique Letf 46 L601 
Kennedy 7 and Lieb E H 1987 Phyr. Reo. Lerr. 59 1309 
Kohmoto M, Kadanaff L P and Tang C 1983 Phys. Rev. Lett. 50 1870 
Luck J M 1989 Phys. Rev. B 39 5834 
Makler S S and Gaspard J P 1990 Solid Srore Commun. 75 401 
Morreri R and Gaspard J P 1981 J.  Physique 42 C4 245 
Ostlund S, Pandit R, Rand D, Schellnhuber H J and Siggia E D 1983 Phys. Rev. Letr. 50 1873 
Peierls R 1955 Qumrum Theov  ofSolids (Oxford: Pergamon) 
Schechtman D,  Blech I, Gratias D and Cahn J V 1984 Phye R e a  Letr. 53 1951 
Sire C 1989 Europhp  Letr. 10 483 
Sire C and Mosseri R 1989 J.  Physique 50 3447 
Sire C, Mosseri R and Sadoc J F 1989 J,  Physique 50 3463 
Wang K, Garoche P and Calvayrac Y 1988 Roe.  ILL/ CODEST Workrhop on Quasicrysmlline Materials ed 

Ch Janot and J M Dubois (Singapore: World Scientific) 


